Graphene Platelets as Morphology Tailoring Additive in Carbon Nanotube Transparent and Flexible Electrodes for Heating Applications

Author:

Wroblewski Grzegorz1,Kielbasinski Konrad2,Stapinski Tomasz3,Jaglarz Janusz4,Marszalek Konstanty3,Swatowska Barbara3,Dybowska-Sarapuk Lucja2,Jakubowska Malgorzata12ORCID

Affiliation:

1. Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Andrzeja Boboli 8, 02-525 Warsaw, Poland

2. Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw, Poland

3. AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland

4. Institute of Physics, Cracow University of Technology, Podchorazych 1, 30-084 Krakow, Poland

Abstract

Flexible and transparent electrodes were fabricated with spray coating technique from paints based on multiwalled carbon nanotubes with the addition of graphene platelets. The work presents the influence of graphene platelets on the paints rheology and layers morphology, which has a strong connection to the electrooptical parameters of the electrodes. The paints rheology affects the atomization during spray coating and later the leveling of the coating on the substrate. Both technological aspects shape the morphology of the electrode and the distribution of nanoparticles in the coating. All these factors influence the sheet resistance and roughness, which is linked to the optical transmission and absorbance. In our research the electrode was applied as a transparent and elastic heating element with 68% optical transmission at 550 nm wavelength and 8.4 kΩ/□ sheet resistance. The elastic heating element was tested with a thermal camera at the 3 diverse supply voltages −20, 30, and 60 VDC. The test successfully confirmed and supported our proposed uses of elaborated electrodes.

Funder

Polish National Centre for Research and Development

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3