A Music Emotion Classification Model Based on the Improved Convolutional Neural Network

Author:

Jia Xiaosong12ORCID

Affiliation:

1. College of Music and Dance, JiNing Normal Unisersity, JiNing, Inner Mongolia 012000, China

2. Philippine Christian University, Manila, Philippines

Abstract

Aiming at the problems of music emotion classification, a music emotion recognition method based on the convolutional neural network is proposed. First, the mel-frequency cepstral coefficient (MFCC) and residual phase (RP) are weighted and combined to extract the audio low-level features of music, so as to improve the efficiency of data mining. Then, the spectrogram is input into the convolutional recurrent neural network (CRNN) to extract the time-domain features, frequency-domain features, and sequence features of audio. At the same time, the low-level features of audio are input into the bidirectional long short-term memory (Bi-LSTM) network to further obtain the sequence information of audio features. Finally, the two parts of features are fused and input into the softmax classification function with the center loss function to achieve the recognition of four music emotions. The experimental results based on the emotion music dataset show that the recognition accuracy of the proposed method is 92.06%, and the value of the loss function is about 0.98, both of which are better than other methods. The proposed method provides a new feasible idea for the development of music emotion recognition.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring Machine Learning Techniques for Music Emotion Classification: A Comprehensive Review;2024 11th International Conference on Computing for Sustainable Global Development (INDIACom);2024-02-28

2. Machine learning music emotion recognition based on audio features;2023 IEEE 6th International Conference on Information Systems and Computer Aided Education (ICISCAE);2023-09-23

3. MERP: A Music Dataset with Emotion Ratings and Raters’ Profile Information;Sensors;2022-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3