Adaptive Approach for Boundary Effects Reduction in Rotating Machine Signals Analysis

Author:

Su Hang1,Liu Quan1,Li Jingsong1

Affiliation:

1. Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Wuhan University of Technology, Hubei 430070, China

Abstract

Boundary effects are caused by incomplete data in the boundary regions when the analysis window gets closer to the edge of a signal. Various extension schemes have been developed to handle the boundaries of finite length signals to reduce the boundary effects. Zero padding, periodic extension, and symmetric extension are some basic extension methods. However, these solutions have drawbacks. In this paper, we consider the problem of handling the boundary effects due to improper extension methods in the wavelet transform for the application of fault diagnosis of rotating machine. An extension algorithm based on curve fitting with properties that make it more suitable for boundary effects reduction is presented. This extension algorithm could preserve the time-varying characteristics of the signals and be effective to reduce distortions appearing at the boundary. Then, an interpolation approach is used in the boundary effects region to further alleviate the distortions. Procedures for realization of these two algorithms and relative issues are presented. Several experimental tests show that the proposed algorithms are efficient to alleviate the boundary effects in comparison to the existing extension methods.

Funder

National High Technology Research and Development Program (863 Program) of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3