Determination of PV Module Potential Using Estimates of Hourly Irradiance and Temperature for Bambili

Author:

Yungho Edickson BoboORCID,Nfah Eustace Mbaka,Ecladore Tchahou Tchendjeu Achille

Abstract

The amount of irradiance incident on a photovoltaic module and the module temperature are essential parameters to estimate its performance and forecast its energy output. These data are often available only where there are meteorological stations. Consequently, other methods are required to estimate these data. The objective of this work was to estimate the irradiance and temperature from different models and further estimate the annual energy output for Bambili, Cameroon. To this effect, mathematical models such as Angstrom–Prescott (A‐P), Kaplanis, Duffie and Beckman, and Collares‐Pereira and Rabl were employed for the estimation of irradiance, while the WAVE, SOYGRO, and Parton and Logan models were used for temperature computations. Collares‐Pereira and Rabl irradiance models showed a lower percentage root mean square error (RMSE) value of 6.71 with respect to the National Aeronautics and Space Administration (NASA), while for temperature models, Parton and Logan performed better from 6 a.m. to noon and SOYGRO from 1 to 6 p.m. with percentage RMSE values of 7.17 and 9.86, respectively. With the estimated irradiance and temperatures from the models, the monthly and annual energy outputs were computed using mathematical models of the PV module. The percentage RMSE of the annual energy estimated with respect to the Photovoltaic Geographical Information System (PVGIS) was found to be 1.95 and 4.40 for BP3125 and BP3180 modules, respectively, while the percentage RMSE of the annual energy estimated with respect to Photovoltaic Software (PVsyst) was found to be 2.14 and 4.22 for BP3125 and BP3180 modules, respectively. In conclusion, the results showed that Collares‐Pereira and Rabl, SOYGRO, and PV model equations can be employed with BP3125 and BP3180 PV modules for the estimation of energy output for Bambili and other locations with no meteorological stations or internet services.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3