Study on the Interaction between Low-Viscosity High-Permeability Pregrouting Sealing Material and Coal and Its Application

Author:

Chen Yujia123,Li Ao45ORCID,Yang Dingding6ORCID,Liu Tianyu123,Li Xiaowei123ORCID,Tang Jun123,Jiang Chenglin123

Affiliation:

1. Key Laboratory of Gas and Fire Control for Coal Mines, Xuzhou 221116, Jiangsu, China

2. National Engineering Research Center of Coal Gas Control, Xuzhou 221116, Jiangsu, China

3. School of Safety Engineering, China University of Mining & Technology, Xuzhou 221116, Jiangsu, China

4. College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China

5. Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221000, Jiangsu, China

6. School of Petrochemical and Energy Engineering, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China

Abstract

In order to ensure the intactness of pressure-measuring boreholes and the accuracy of gas pressure determination, pregrouting treatment with polymer materials is frequently applied to bedding drilling in coal mines. However, the existing polyurethane materials are of high viscosity, low permeability, and poor safety, bringing great difficulties to their field promotion and application. In view of this problem, after optimization and experiments, polylactide polyol/polyether polyol 4110/isocyanate was determined as the target system. Bio-based benzoxazine (Boz-F), red phosphorus, and melamine with a mass ratio of 2 : 1 : 2 were used as the flame retardant, which then underwent mechanical modification by hollow glass bubbles. Finally, the pregrouting material with low viscosity and high permeability was compounded, and its interaction with coal was experimentally studied. The results show that compared with traditional polyurethane, the new material increases the effective consolidation distance in the coal seam by 40% on average. Its permeation radius is also larger than the calculated radius of the plastic softening zone of a borehole. In addition, the strengths of coal-new material consolidated products with different ratios fully surpass those of coal-polyurethane material consolidated products. The enhancement of compressive strength and bending strength is up to 153% and 161%, respectively. The field application indicates that after pregrouting treatment of boreholes in the coal seam with the new material, the borehole formation rate reaches 100%. Therefore, the new material is safe and practical for gas pressure measurement through bedding drilling on site.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3