Feature Matching Optimization of Multimedia Remote Sensing Images Based on Multiscale Edge Extraction

Author:

Wang Yani1ORCID,Dong Jinfang2ORCID,Wang Bo3ORCID

Affiliation:

1. Xi’an University, Xi’an, Shaanxi 710000, China

2. Shaanxi Meteorological Service Center of Agricultural Remote Sensing and Economic Crops, Baoji, Shaanxi 721199, China

3. Shaanxi Geomatics Center, Ministry of Natural Resources, Xi’an, Shaanxi 710054, China

Abstract

In order to solve the problem of low efficiency of image feature matching in traditional remote sensing image database, this paper proposes the feature matching optimization of multimedia remote sensing images based on multiscale edge extraction, expounds the basic theory of multiscale edge, and then registers multimedia remote sensing images based on the selection of optimal control points. In this paper, 100 remote sensing images with a size of 3619 825 with a resolution of 30 m are selected as experimental data. The computer is configured with 2.9 ghz CPU, 16 g memory, and i7 processor. The research mainly includes two parts: image matching efficiency analysis of multiscale model; matching accuracy analysis of multiscale model and formulation of model parameters. The results show that when the amount of image data is large, feature matching takes more time. With the increase of sampling rate, the amount of image data decreases rapidly, and the feature matching time also shortens rapidly, which provides a theoretical basis for the multiscale model to improve the matching efficiency. The data size is the same, 3619 × 1825, which makes the matching time between images have little difference. Therefore, the matching time increases linearly with the increase of the number of images in the database. When the amount of image data in the database is large, a higher number of layers should be used; when the amount of image data in the database is small, the number of layers of the model should be reduced to ensure the accuracy of matching. The availability of the proposed method is proved.

Funder

Xi’an Science and Technology Project of Shaanxi Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3