Solving Continuous Models with Dependent Uncertainty: A Computational Approach

Author:

Cortés J.-C.1,Romero J.-V.1,Roselló M.-D.1,Santonja Francisco-J.2,Villanueva Rafael-J.1

Affiliation:

1. Instituto Universitario de Matemática Multidisciplinar, Building 8G, 2nd Floor Access C, Universitat Politècnica de València, 46022 Valencia, Spain

2. Departamento de Estadística e Investigación Operativa, Facultad de Ciencias Matemáticas, Universitat de València, Avenida Doctor Moliner S/N, Burjassot, 46100 Valencia, Spain

Abstract

This paper presents a computational study on a quasi-Galerkin projection-based method to deal with a class of systems of random ordinary differential equations (r.o.d.e.’s) which is assumed to depend on a finite number of random variables (r.v.’s). This class of systems of r.o.d.e.’s appears in different areas, particularly in epidemiology modelling. In contrast with the other available Galerkin-based techniques, such as the generalized Polynomial Chaos, the proposed method expands the solution directly in terms of the random inputs rather than auxiliary r.v.’s. Theoretically, Galerkin projection-based methods take advantage of orthogonality with the aim of simplifying the involved computations when solving r.o.d.e.’s, which means to compute both the solution and its main statistical functions such as the expectation and the standard deviation. This approach requires the previous determination of an orthonormal basis which, in practice, could become computationally burden and, as a consequence, could ruin the method. Motivated by this fact, we present a technique to deal with r.o.d.e.’s that avoids constructing an orthogonal basis and keeps computationally competitive even assuming statistical dependence among the random input parameters. Through a wide range of examples, including a classical epidemiologic model, we show the ability of the method to solve r.o.d.e.’s.

Funder

Spanish Ministerio de Ciencia Y Tecnologia

Publisher

Hindawi Limited

Subject

Applied Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3