System-Level Power Consumption Analysis of the Wearable Asthmatic Wheeze Quantification

Author:

Oletic Dinko1ORCID,Bilas Vedran1ORCID

Affiliation:

1. Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia

Abstract

Long-term quantification of asthmatic wheezing envisions an m-Health sensor system consisting of a smartphone and a body-worn wireless acoustic sensor. As both devices are power constrained, the main criterion guiding the system design comes down to minimization of power consumption, while retaining sufficient respiratory sound classification accuracy (i.e., wheeze detection). Crucial for assessment of the system-level power consumption is the understanding of trade-off between power cost of computationally intensive local processing and communication. Therefore, we analyze power requirements of signal acquisition, processing, and communication in three typical operating scenarios: (1) streaming of uncompressed respiratory signal to a smartphone for classification, (2) signal streaming utilizing compressive sensing (CS) for reduction of data rate, and (3) respiratory sound classification onboard the wearable sensor. Study shows that the third scenario featuring the lowest communication cost enables the lowest total sensor system power consumption ranging from 328 to 428 μW. In such scenario, 32-bit ARM Cortex M3/M4 cores typically embedded within Bluetooth 4 SoC modules feature the optimal trade-off between onboard classification performance and consumption. On the other hand, study confirms that CS enables the most power-efficient design of the wearable sensor (216 to 357 μW) in the compressed signal streaming, the second scenario. In such case, a single low-power ARM Cortex-A53 core is sufficient for simultaneous real-time CS reconstruction and classification on the smartphone, while keeping the total system power within budget for uncompressed streaming.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3