A Concept of Online Refueling TRISO-Fueled and Salt-Cooled Reactor

Author:

Feng Xiaoyong1ORCID,Lee Hyun Chul1ORCID

Affiliation:

1. School of Mechanical Engineering, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea

Abstract

This paper introduces a novel concept of a TRISO-fueled salt-cooled reactor (TFSCR). The core contains circulating pipes filled with molten salt carrying TRISO particles. The reactor achieves online refueling by slowly circulating the molten salt through the pipeline. The reactor utilizes the same molten salt as the coolant and graphite as the moderator. The reactor design has the characteristics of safety, economy, and nonproliferation. TRISO particles exhibit greater resistance to neutron irradiation, corrosion, oxidation, and high temperatures compared to conventional fuels. A molten salt-cooled reactor can also operate at higher temperatures, consequently enhancing power generation efficiency. Furthermore, lower operating pressures can mitigate the risk of significant damages and loss of coolant caused by accidents, thereby enhancing reactor safety. This paper presents the basic nuclear design of TFSCR under the assumptions concerning the average fuel power density, the volumetric core power density, and the core temperature. At the same time, the feasibility of online refueling and long-life operation was evaluated by fuel burnup calculation.

Funder

Ministry of Trade, Industry and Energy

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3