Revisited on the Free Vibration of a Cantilever Beam with an Asymmetrically Attached Tip Mass

Author:

Lei Xiangsheng1,Wang Yanfeng1,Wang Xinghua1,Lin Gang2ORCID,Shi Shihong2

Affiliation:

1. Research Center of Grid Planning, Guangdong Power Grid Corporation, Guangzhou 510080, China

2. China Energy Engineering Group Guangdong Electric Power Design Institute Co., Ltd., Guangzhou 510663, China

Abstract

Cantilever with an asymmetrically attached tip mass arises in many engineering applications. Both the traditional method of separation of variables and the method of Laplace transform are employed in the present paper to solve the eigenvalue problem of the free vibration of such structures, and the effect of the eccentric distance along the vertical direction and the length direction of the tip mass is considered here. For the traditional method of separation of variables, tip mass only affects to the boundary conditions, and the eigenvalue problem of the free vibration is solved based on the nonhomogeneous boundary conditions. For the method of Laplace transform, the effect of the tip mass is introduced in the governing equation with the Dirac function, and the eigenvalue problem then can be solved through Laplace transform with homogeneous boundary conditions. The computed results with these two methods are compared well with the numerical solution obtained by finite element method and approximate analytical solutions, and the effect of tip mass dimensions on the natural frequencies and corresponding mode shapes is also given.

Funder

Guangdong Power Grid Corporation Science and Technology Project

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3