News Text Classification Method and Simulation Based on the Hybrid Deep Learning Model

Author:

Sun Ningfeng1,Du Chengye2ORCID

Affiliation:

1. School of Humanities, Southwestern University of Finance and Economics, Chengdu, Sichuan 610036, China

2. School of Film and Television, Yunnan Arts University, Kunming, Yunnan 650500, China

Abstract

This paper uses the database as the data source, using bibliometrics and visual analysis methods, to statistically analyze the relevant documents published in the field of text classification in the past ten years, to clarify the development context and research status of the text classification field, and to predict the research in the field of text classification priorities and research frontiers. Based on the in-depth study of the background, research status, related theories, and developments of online news text classification, this article analyzes the annual publication trend, subject distribution, journal distribution, institution distribution, author distribution, highly cited literature analysis, and research hotspots. Forefront and other aspects clarify the development context and research status of the text classification field and provide a theoretical reference for the further development of the text classification field. Then, on the basis of systematic research on text classification, deep learning, and news text classification theories, a deep learning-based network news text classification model is constructed, and the function of each module is introduced in detail, which will help the future news text classification of application and improvement provide theoretical basis. On the basis of the predecessors, this article separately studied and improved the neural network model based on the convolutional neural network, cyclic neural network, and attention mechanism and merged the three models into one model, which can obtain local associated features and contextual features and highlight the role of keywords. Finally, experiments are used to verify the effectiveness of the model proposed in this paper and compared with traditional text classification to prove the superiority of the network news text classification based on deep learning proposed in this paper. This article aims to study the internal connection between news comments and the number of votes received by news comments, and through the proposed model, the number of votes for news comments can be predicted.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference28 articles.

1. CSI: a hybrid deep model for fake news detection;N. Ruchansky;Information and Knowledge Management,2019

2. Fake news detection: A hybrid CNN-RNN based deep learning approach

3. Chinese Text Classification Model Based on Deep Learning

4. Text classification based on hybrid CNN-LSTM hybrid model;X. She;Symposium on Computational Intelligence and Design (ISCID),2018

5. A Hybrid Bidirectional Recurrent Convolutional Neural Network Attention-Based Model for Text Classification

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3