Regulatory Interactions between Androgens, Hoxb5, and TGFβSignaling in Murine Lung Development

Author:

Volpe MaryAnn V.12,Ramadurai Sujatha M.1,Mujahid Sana1,Vong Thanhxuan1,Brandao Marcia1,Wang Karen T.1,Pham Lucia D.1,Nielsen Heber C.1

Affiliation:

1. Division of Newborn Medicine, Department of Pediatrics, Floating Hospital for Children at Tufts Medical Center and Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA

2. Division of Neonatology, Department of Pediatrics, Tufts Medical Center, Boston, MA 02111, USA

Abstract

Androgens enhance airway branching but delay alveolar maturation contributing to increased respiratory morbidity in prematurely born male infants. Hoxb5 protein positively regulates airway branching in developing lung. In other organs, androgen regulation intersects with Hox proteins and TGFβ-SMAD signaling, but these interactions have not been studied in the lung. We hypothesized that androgen alteration of airway branching early in lung development requires Hoxb5 expression and that these androgen-Hoxb5 interactions occur partially through regional changes in TGFβsignaling. To evaluate acute effects of androgen and TGFβon Hoxb5, E11 whole fetal mouse lungs were cultured with dihydrotestosterone (DHT) with/without Hoxb5 siRNA or TGFβinhibitory antibody. Chronicin uteroDHT exposure was accomplished by exposing pregnant mice to DHT (subcutaneous pellet) from E11 to E18. DHT’s ability to enhance airway branching and alter phosphorylated SMAD2 cellular localization was partially dependent on Hoxb5. Hoxb5 inhibition also changed the cellular distribution of SMAD7 protein. Chronicin uteroDHT increased Hoxb5 and altered SMAD7 mesenchymal localization. TGFβinhibition enhanced airway branching, and Hoxb5 protein cellular localization was more diffuse. We conclude that DHT controls lung airway development partially through modulation of Hoxb5 protein expression and that this level of regulation involves interactions with TGFβsignaling.

Funder

National Institutes of Health

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3