Affiliation:
1. Department of Metallurgical & Materials Engineering, University of Lagos, Nigeria
Abstract
Machines designed to operate in marine environment are generally vulnerable to failure by corrosion. It is therefore imperative that the corrosion susceptibility of such facilities is evaluated with a view to establishing mechanism for its mitigation. In this study, the corrosion behaviour of as-cast and retrogression-reagion (RRA) specimens of aluminum alloy containing 0.4–2.0 percent magnesium additions in NaCl, FeCl3, and EXCO solutions was investigated. The corrosion simulation processes involved gravimetric and electrochemical techniques. Results show substantial inducement of Mg2Si precipitates at a relatively higher magnesium addition, 1.2–2.0 percent, giving rise to increased attack. This phenomenon is predicated on the nature of the Mg2Si crystals being anodic relative to the alloy matrix which easily dissolved under attack by chemical constituents. Formation of Mg2Si intermetallic without corresponding appropriate oxides like SiO2and MgO, which protect the precipitates from galvanic coupling with the matrix, accentuates susceptibility to corrosion.
Subject
Process Chemistry and Technology,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献