3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing

Author:

Bickauskaite Gabija12,Manousidaki Maria23,Terzaki Konstantina24,Kambouraki Elmina24,Sakellari Ioanna23,Vasilantonakis Nikos24,Gray David2,Soukoulis Costas M.25,Fotakis Costas23,Vamvakaki Maria24,Kafesaki Maria24,Farsari Maria2,Pikulin Alexander6,Bityurin Nikita6

Affiliation:

1. Department of Quantum Electronics, Vilnius University, 02300 Vilnius, Lithuania

2. IESL-FORTH, N. Plastira 100, Heraklion, 70013 Crete, Greece

3. Department of Physics, University of Crete, Heraklion, 71003 Crete, Greece

4. Department of Materials Science and Technology, University of Crete, Heraklion, 71003 Crete, Greece

5. Ames Laboratory, Department of Physics and Astronomy, Iowa State University, Ames, IA 50011-2011, USA

6. Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia

Abstract

We present our research into the fabrication of fully three-dimensional metallic nanostructures using diffusion-assisted direct laser writing, a technique which employs quencher diffusion to fabricate structures with resolution beyond the diffraction limit. We have made dielectric 3D nanostructures by multiphoton polymerization using a metal-binding organic-inorganic hybrid material, and we covered them with silver using selective electroless plating. We have used this method to make spirals and woodpiles with 600 nm intralayer periodicity. The resulting photonic nanostructures have a smooth metallic surface and exhibit well-defined diffraction spectra, indicating good fabrication quality and internal periodicity. In addition, we have made dielectric woodpile structures decorated with gold nanoparticles. Our results show that diffusion-assisted direct laser writing and selective electroless plating can be combined to form a viable route for the fabrication of 3D dielectric and metallic photonic nanostructures.

Funder

Marie Curie Initial Training Networks

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3