Virtual Submerged Floating Operational System for Robotic Manipulation

Author:

Zhang Qin1ORCID,Zhang Jialei2,Chemori Ahmed3,Xiang Xianbo24ORCID

Affiliation:

1. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

2. School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

3. LIRMM, CNRS - University of Montpellier, 161 rue Ada, 34392 Montpellier, France

4. Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China

Abstract

In this work, a virtual submerged floating operational system (VSFOS) based on parallel and serial robotic platforms is proposed. The primary aim behind its development lies in carrying out simulated underwater manipulation experiments in an easier and safer way. This VSFOS is consisted of a six-degree-of-freedom (6-DOF) parallel platform, an ABB serial manipulator, an inertial sensor, and a real-time industrial computer. The 6-DOF platform is used to simulate the movement of an underwater vehicle, whose attitude is measured by the inertial sensor. The ABB manipulator, controlled by the real-time industrial computer, works as an operational tool to perform underwater manipulation tasks. In the control system architecture, software is developed to receive the data collected by the inertial sensor, to communicate and send instructions. Furthermore, the real-time status of the manipulator is displayed in this software. To validate the proposed system, two experiments have been conducted to test its performance. In the first experiment, the test is carried out to check the communication function of VSFOS, while in the second one, the manipulator is intended to follow the movement of the parallel platform and perform simulated operational task in the space. The obtained results from these two experiments show clearly the effectiveness and the performance of the proposed VSFOS.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3