Analytical Solution for Electrical Problem Forced by a Finite-Length Needle Electrode: Implications in Electrostimulation

Author:

Romero-Méndez Ricardo1ORCID,Pérez-Gutiérrez Francisco G.1,Oviedo-Tolentino Francisco1,Berjano Enrique2ORCID

Affiliation:

1. Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78290, Mexico

2. BioMIT, Department of Electronic Engineering, Universitat Politècnica de València, Camino de Vera, Valencia, 46022, Spain

Abstract

Needle electrodes, widely used in clinical procedures, are responsible for creating an electric field in the treated biological tissue. This is achieved by setting a constant voltage along the length of their metallic section. In accordance with Laplace’s equation, the electric field is spatially non-uniform around the electrode surface. Mathematical modelling can provide useful information on the spatial distribution of electrical fields. Indeed, exact solutions for the electrical problem are indispensable for validating numerical codes. All the analytical models developed to date to solve the needle electrode electrical problem have been one-dimensional models, which assumed an electrode of infinite length. We here propose the first analytical solution based on a two-dimensional model that considers the real length of the electrode in which the Laplace equation is solved through the method of separation of variables, dealing with the nonhomogeneous source term and boundary conditions by Green’s functions. On assuming a needle electrode of given length, the problem combines boundary conditions on the electrode boundary (of the first and second kind). Since this rules out using the Sturm-Liouville Theorem, the problem is decomposed into two different problems and the principle of superposition is used. The solution obtained can reproduce a reasonable electric field around the electrode, especially the edge effect characterized by an extremely high gradient around the electrode tip.

Funder

Universidad Autónoma de San Luis Potosí

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3