GIS-Based Irrigation Dams Potential Assessment of Floating Solar PV System

Author:

Nebey Abraham Hizkiel1ORCID,Taye Biniyam Zemene1,Workineh Tewodros Gera1

Affiliation:

1. Lecturer of Electrical Power, Faculty Electrical and Computer Engineering, Bahir Dar University Institute of Technology, Bahir Dar, Ethiopia

Abstract

The majority of the Ethiopian population lives in rural areas and uses wood for domestic energy consumption. Using wood and fuel for domestic uses accounts for deforestation and health problems, which is also dangerous for the environment. The Ethiopian government has been planning to generate power from available renewable resources around the community. Therefore, determining the water surface potential of energy harvesting with floating solar photovoltaic system by using geographic information system is used to support decision-makers to use high potential areas. To identify useable areas for floating solar photovoltaic, factors that affect the usability were identified and weighted by using Analytical Hierarchy Processes. Thus, weighted values and reclassified values were multiplied to do the final usability map of floating solar photovoltaic with ArcGIS software. Due to the improper location of floating solar photovoltaic, efficiency is dropped. Therefore, the objective of this study was to identify the most usable surface of water bodies in Amhara regional, state irrigation dams for generating electrical power. The usability of the water surface for floating solar photovoltaic power plant was 63.83%, 61.09%, and 57.20% of Angereb, Rib, and Koga irrigation dams, respectively. The majority of the usable areas were found in the middle of the water surface. Nature water surface is a key factor in generating solar energy; it affects the floating solar photovoltaic and irradiance coming to the solar photovoltaic panel surface.

Publisher

Hindawi Limited

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3