Affiliation:
1. Department of Energy Engineering and Environment, An-Najah National University, 97300 Nablus, State of Palestine
2. Faculty of Graduate Studies, An-Najah National University, 97300 Nablus, State of Palestine
Abstract
In this research, a differential protection technique for a power transformer is proposed by using random forest and boosting learning machines. The proposed learning machines aim to provide a protection expert system that distinguishes between different transformer status which are normal, inrush, overexcitation, CT saturation, or internal fault. Data for 20 different transformers with 5 operating cases are used in this research. The utilized random forest and boosting techniques are trained using these data. Meanwhile, the proposed models are validated by other measures such as out-of-bag error and confusion matrix. In addition, variable importance analysis that shows signal’s component importance inside a transformer at different instances is provided. According to the result, the proposed random forest model successfully identifies all of the current cases (100% accuracy for the conducted experiment). Meanwhile, it is found that it is less accurate as a conditional monitoring element with accuracy in the range of 97%–98%. On the other hand, the proposed boosting model identifies all of the currents for both cases (100% accuracy for the conducted experiment). In addition to that, a comparison is conducted between the proposed models and other AI-based models. Based on this comparison, the proposed boosting model is the simplest and the most accurate model as compared to other models.
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Diagnosis of AD and DSV Winding Faults Based on FRA Method and Random Forest Algorithm;2023 IEEE 4th International Conference on Electrical Materials and Power Equipment (ICEMPE);2023-05-07