Affiliation:
1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
Abstract
The global asymptotic behavior of solutions in a cross-diffusive predator-prey model with cannibalism is studied in this paper. Firstly, the local stability of nonnegative equilibria for the weakly coupled reaction-diffusion model and strongly coupled cross-diffusion model is discussed. It is shown that the equilibria have the same stability properties for the corresponding ODE model and semilinear reaction-diffusion model, but under suitable conditions on reaction coefficients, cross-diffusion-driven Turing instability occurs. Secondly, the uniform boundedness and the global existence of solutions for the model with SKT-type cross-diffusion are investigated when the space dimension is one. Finally, the global stability of the positive equilibrium is established by constructing a Lyapunov function. The result indicates that, under certain conditions on reaction coefficients, the model has no nonconstant positive steady state if the diffusion matrix is positive definite and the self-diffusion coefficients are large enough.
Funder
National Natural Science Foundation of China
Subject
Multidisciplinary,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献