Integrated Damage Sensing in Fibre-Reinforced Composites with Extremely Low Carbon Nanotube Loadings

Author:

Zhang Han1,Kuwata Manabu1,Bilotti Emiliano12,Peijs Ton12

Affiliation:

1. School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK

2. Nanoforce Technology Ltd., Queen Mary University of London, Joseph Priestley Building, Mile End Road, London E1 4NS, UK

Abstract

A nanoengineered hybrid composite system has been developed, with integrated damage sensing capabilities at extremely low carbon nanotube (CNT) contents. The employed simple spray coating technique offers good spatial control and the possibility of localized CNT deposition, especially near the fibre/matrix interface, solving traditional problems associated with the incorporation of nanofillers in fibre-reinforced composite laminates such as increased resin viscosity and filtering effects. Moreover, the employed spraying technology has good potential for industrial scale-up.In situdamage sensing based on standard composite tests has been demonstrated for the first time on hybrid glass fibre/CNT composites using extremely low CNT loadings (below 0.1 wt.%) and shows great potential for localized structural health monitoring by controlled CNT deposition into damage prone zones.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3