Optical Fiber Sensor Experimental Research Based on the Theory of Bending Loss Applied to Monitoring Differential Settlement at the Earth-Rock Junction

Author:

Qiu Jianchun123,Zheng Dongjian123,Zhu Kai23,Fang Bin4,Cheng Lin5

Affiliation:

1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China

2. National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China

3. College of Water-Conservancy and Hydropower, Hohai University, Nanjing 210098, China

4. HYDROCHINA Guiyang Engineering Corporation Co., Ltd., Guiyang 550081, China

5. State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area, Xi’an University of Technology, Xi’an 710048, China

Abstract

Considering the differential settlement in the junction between the structure perpendicular to the dike and the body and foundation of dike (called the earth-rock junction in this paper) during runtime, an experimental investigation of optical fiber sensor monitoring was conducted. Based on the sensing mechanism of single-mode optical fiber bending loss, the experiment focused on the influence of the bending radius of an optical fiber on the bending loss. In view of the characteristics of the differential settlement in the earth-rock junction, we designed a butterfly-type optical fiber sensor and composite optical fiber sensor for monitoring device in monitoring the differential settlement to enlarge the monitoring range and improve the sensibility of optical fiber sensor. Based on the research on the working principle and bending properties of the composite optical fiber monitoring device, we conducted experiments on the bending of the composite optical fiber sensor monitoring device and the use of the device for monitoring the differential settlement. These experiments verified the feasibility of the composite optical fiber sensor monitoring device at monitoring the differential settlement in the earth-rock junction.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3