Biomimetic Rotary Tillage Blade Design for Reduced Torque and Energy Requirement

Author:

Yang Yuwan1ORCID,Tong Jin23ORCID,Huang Yuxiang1,Li Jinguang23,Jiang Xiaohu23

Affiliation:

1. College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China

2. College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China

3. Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China

Abstract

A rotary cultivator is a primary cultivating machine in many countries. However, it is always challenged by high operating torque and power requirement. To address this issue, biomimetic rotary tillage blades were designed in this study for reduced torque and energy requirement based on the geometric characteristics (GC) of five fore claws of mole rats, including the contour curves of the five claw tips (GC-1) and the structural characteristics of the multiclaw combination (GC-2). Herein, the optimal blade was selected by considering three factors: (1) the ratio ( r ) of claw width to lateral spacing, (2) the inclined angle ( θ ) of the multiclaw combination, and (3) the rotary speed ( n ) through the soil bin tests. The results showed that the order of influence of factors on torque was n , r , and θ ; the optimal combination of factors with the minimal torque was r = 1.25 , θ = 60 ° , and n = 240 rpm . Furthermore, the torque of the optimal blade (BB-1) was studied by comparing with a conventional (CB) and a reported optimal biomimetic blade (BB-2) in the soil bin at the rotary speed from 160 to 320 rpm. Results showed that BB-1 and BB-2 averagely reduced the torque by 13.99% and 3.74% compared with CB, respectively. The field experiment results also showed the excellent soil-cutting performance of BB-1 whose average torques were largely reduced by 17.00%, 16.88%, and 21.80% compared with CB at different rotary speeds, forward velocities, and tillage depths, respectively. It was found that the geometric structure of the five claws of mole rats could not only enhance the penetrating and sliding cutting performance of the cutting edge of BB-1 but also diminish the soil failure wedge for minimizing soil shear resistance of BB-1. Therefore, the GC of five fore claws of mole rats could inspire the development of efficient tillage or digging tools for reducing soil resistance and energy consumption.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Reference33 articles.

1. Variations of torque and specific tilling energy for different rotary blades;S. Chertkiattipol;International Agricultural Engineering Journal,2010

2. Innovations in agronomy for food legumes. A review

3. Development and evaluation of multipurpose tool carrier for power tiller;M. Veerangouda;Karnataka Journal of Agricultural Sciences,2011

4. Rotary tillage effects on some selected physical properties of fine textured soil in wetland rice cultivation in Malaysia

5. Power Requirement of a Rotary Tiller in Saturated Soil

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3