Gravity Affects the Closure of the Traps inDionaea muscipula

Author:

Pandolfi Camilla1ORCID,Masi Elisa1ORCID,Voigt Boris2,Mugnai Sergio1,Volkmann Dieter2,Mancuso Stefano1

Affiliation:

1. DISPAA, University of Florence, Viale delle idee 30, 50019 Sesto Fiorentino, Italy

2. IZMB, University of Bonn, Kirschallee 1, 53115 Bonn, Germany

Abstract

Venus flytrap (Dionaea muscipulaEllis) is a carnivorous plant known for its ability to capture insects thanks to the fast snapping of its traps. This fast movement has been long studied and it is triggered by the mechanical stimulation of hairs, located in the middle of the leaves. Here we present detailed experiments on the effect of microgravity on trap closure recorded for the first time during a parabolic flight campaign. Our results suggest that gravity has an impact on trap responsiveness and on the kinetics of trap closure. The possible role of the alterations of membrane permeability induced by microgravity on trap movement is discussed. Finally we show how the Venus flytrap could be an easy and effective model plant to perform studies on ion channels and aquaporin activities, as well as on electrical activityin vivoon board of parabolic flights and large diameter centrifuges.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Case Studies;Biomimetics of Motion;2018-06-14

2. Interaction of Gravity with Cellular Compounds;Gravitational Biology II;2018

3. Three-Dimensional-Printed Carnivorous Plant with Snap Trap;3D Printing and Additive Manufacturing;2016-12

4. Fast nastic motion of plants and bioinspired structures;Journal of The Royal Society Interface;2015-09

5. The Electrical Network of Maize Root Apex is Gravity Dependent;Scientific Reports;2015-01-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3