Analysis of Traveling Wave and Combined Site Effect of Long-Span Upper-Bearing Concrete-Filled Steel Tubular Arch Bridge

Author:

Li Zite12ORCID,Wang Genhui1ORCID,Fan Jiang2,Jian Yue3,Zhang Yongliang1

Affiliation:

1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China

2. Gansu Province Transportation Planning, Survey and Design Institute Co. Ltd., Lanzhou 730030, Gansu, China

3. Department of Basic Sciences, Lanzhou Institute of Technology, Lanzhou 730050, Gansu, China

Abstract

In order to study the traveling wave effect and combined site effect of long-span steel tube concrete-filled arch bridge, a 400-m span bridge of the same type is taken as an example, and a large-mass time-history analysis method with multipoint input of recorded seismic waves is used. A total of 11 kinds of traveling wave excitations and 9 kinds of combined site excitations under 4 types of typical sites are carried out to calculate the structural response, and the chord axial force ratio and displacement changes are compared and analyzed. The results show that the long-span arch bridge also has nonuniform seismic excitation conditions in the lateral and vertical directions, and the spatial effect of the structural response is significant; under the traveling wave excitation, the change of the axial force ratio of the chord has a certain periodicity, and it is not the larger the axial force ratio is, the larger the axial force ratio is; the X direction has a significant influence, the maximum axial force ratio of the vault under the design condition is 6.26, and the changes in the Y and Z directions are relatively gentle, but there are still nearly two times the working condition; after the same amplitude modulation of different recorded waves, under the uniform excitation, the axial force is similar, but the displacement is quite different; under the unidirectional traveling wave excitation, the displacement in the X and Z directions shows an accelerating and increasing trend toward the vault. When it is relatively consistent under the unidirectional combined site excitation, and the axial force ratio changes under small and then increases, the L/4–3L/8 segment has a significant impact; the axial force ratio changes are the combined site excitation in different directions are spatially random; three under the combined site excitation. The axial force ratio in the orthogonal direction changes greatly. When the hard field is transformed into the soft field, the axial force ratio decreases, and the displacement increases continuously.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3