Thermoeconomic Analysis of a Solar-Assisted Industrial Process Heating System

Author:

Kumar Laveet1ORCID,Hasanuzzaman M.2ORCID,Rahim N. A.2,Sleiti Ahmad K.1

Affiliation:

1. Department of Mechanical & Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar

2. Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D UM, Jalan Pantai Baharu, 59990 Kuala Lumpur, Malaysia

Abstract

Thermal energy in the industrial sector for process heating applications in the range of 50 to 250°C consumes about 35% of the global fossil fuel. Cascaded solar thermal systems are promising solutions to meet clean and uninterrupted thermal energy supply for industrial process heating. Well-engineered cascaded arrangement of solar thermal collector (STC) and photovoltaic thermal (PVT) collector can attain an average solar fraction of more than 50%. In the present research, a solar-assisted process heating system, wherein a STC integrated in series with PVT, has been designed to produce low- to medium-temperature heat at higher solar fractions. Herein, thermal performance and economic viability of this novel system have been investigated and analyzed methodically. In the present research, a comprehensive TRNSYS simulation model is developed and validated experimentally. Results show that PVT integrated with heat pipe evacuated tube collector (PVT-HPETC) and PVT integrated with flat plate collector (PVT-FPC) system can generate thermal energy as high as 1625 and 1420 W with a thermal efficiency of 81 and 77% and exergy efficiency of 13.22 and 12.72%. Levelized cost of heat (LCOH) for PVT-HPETC at process heat temperatures of 60, 70, and 80°C is 0.214, 0.208, and 0.201 MYR/kWh, respectively. It is worth to note that LCOH is less than the existing cost of heat generation which proves that these systems are economically feasible.

Funder

Qatar University

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3