Design, Fabrication, and Characterization of 3D-Printed Multiphase Scaffolds Based on Triply Periodic Minimal Surfaces

Author:

Vigil Josette1ORCID,Lewis Kailey1ORCID,Norris Nicholas1ORCID,Karakoç Alp2ORCID,Becker Timothy A.13ORCID

Affiliation:

1. Mechanical Engineering Department, Northern Arizona University, Flagstaff, AZ, USA

2. Department of Communications and Networking, Aalto University, Espoo 00076, Finland

3. Center for Materials Interfaces in Research and Applications, Northern Arizona University, Flagstaff, AZ, USA

Abstract

The present work investigates the influence of material phases and their volume fractions on the elastic behavior of triply periodic minimal surface (TPMS) scaffolds for the potential modeling of bone scaffolds. A graphical tool using TPMS functions, namely Schwarz-D (diamond), gyroid, and modified gyroid, was developed and used to design and additively manufacture 3D multiphase scaffold models. A PolyJet, UV-cured 3D-printer system was used to fabricate the various TPMS scaffold models using three polymer materials with high, medium, and low stiffness properties. All TPMS models had the same volume fractions of the three polymer materials. Final models were printed into cylinders with a diameter of 20 mm and a height of 8 mm for mechanical testing. The models were subjected to compressive and shear testing using a dynamic mechanical analysis rheometer. All samples were tested at physiologically relevant temperature (37°C) to provide detailed structural characterizations. Microscopic imaging of 3D-printed scaffold longitudinal and cross sections revealed that additive manufacturing adequately recreated the TPMS functions, which created anisotropic materials with variable structures in the longitudinal and transverse directions. Mechanical testing showed that all three TPMS 3D-printed scaffold types exhibited significantly different shear and compressive properties (verifying anisotropic properties) despite being constructed of the same volume fractions of the three UV-printed polymer materials. The gyroid and diamond scaffolds demonstrated complex moduli values that ranged from 1.2 to 1.8 times greater than the modified gyroid scaffolds in both shear and compression. Control scaffolds printed from 100% of each of the three polymers had statistically similar mechanical properties, verifying isotropic properties.

Funder

Academy of Finland

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3