Evaluation of Alternative Transport Media for RT-qPCR-Based SARS-CoV-2 Testing

Author:

Baek Young Hyun1ORCID,Park Min Young1ORCID,Lim Ho Jae12ORCID,Jung Hye Soo1,Yang Jae-Hyun3ORCID,Sohn Yong-Hak1ORCID,Lee Sun-Hwa4ORCID,Park Jung Eun2ORCID,Yang Yong-Jin1ORCID

Affiliation:

1. Department of Molecular Diagnostics, Seegene Medical Foundation, Seoul 04805, Republic of Korea

2. Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea

3. Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA

4. Department of Laboratory Medicine, Seegene Medical Foundation, Seoul 04805, Republic of Korea

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is still rapidly spreading as of March 2022. An accurate and rapid molecular diagnosis is essential to determine the exact number of confirmed cases. Currently, the viral transport medium (VTM) required for testing is in short supply due to a sharp increase in the laboratory tests performed, and alternative VTMs are needed to alleviate the shortage. Guanidine thiocyanate-based media reportedly inactivate SARS-CoV-2 and are compatible with quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays, but the compatibility and the viral detection capacity have not been fully validated. To evaluate the guanidine thiocyanate-based Gene Transport Medium (GeneTM) as an alternative VTM, we prepared 39 SARS-CoV-2-positive and 7 SARS-CoV-2-negative samples in GeneTM, eNAT™, and phosphate-buffered saline (PBS). The cycle threshold (Ct) values of three SARS-CoV-2 targets (the S, RdRP, and N genes) were analyzed using RT-qPCR testing. The comparison of Ct values from the positive samples showed a high correlation (R2= 0.95–0.96) between GeneTM and eNAT™, indicating a comparable viral detection capacity. The delta Ct values of the SARS-CoV-2 genes in each transport medium were maintained for 14 days at cold (4°C) or room (25°C) temperatures, suggesting viral samples were stably preserved in the transport media for 14 days. Together, GeneTM is a potential alternative VTM with comparable RT-qPCR performance and stability to those of standard media.

Publisher

Hindawi Limited

Subject

Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3