Resilient Transportation Network Design under Uncertain Link Capacity Using a Trilevel Optimization Model

Author:

Rahdar Mohammad1ORCID,Wang Lizhi2ORCID,Dong Jing3ORCID,Hu Guiping24ORCID

Affiliation:

1. Department of Engineering & Physics, St. Ambrose University, Davenport, IA 52803, USA

2. Department of Industrial & Manufacturing Systems Engineering, Iowa State University, Ames, IA 50011, USA

3. Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011, USA

4. Department of Sustainability, Golisano Institute for Sustainability, Rochester Institute of Technology, Rochester, NY, USA

Abstract

This study addresses uncertainty in a transportation network by proposing a trilevel optimization model, which improves resiliency against uncertain disruptions. The goal is to minimize the total travel time by designing a resilient transportation network under uncertain disruptions and deterministic origin-destination demands. The trilevel optimization model has three levels. The lower level determines the network flow, and the middle level assesses the network’s resiliency by identifying the worst-case scenario disruptions that could lead to maximal travel time. The upper-level takes the system perspective to expand the existing transportation network to enhance resiliency. We also propose a formulation for the network flow problem to significantly reduce the number of variables and constraints. Two algorithms have been developed to solve the trilevel model. The results of solving the highway network in Iowa show that the trilevel optimization model improves the total travel time by an average of 41%.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Resilient Transportation Systems in the Last Five Years;2023 7th International Conference on Transportation Information and Safety (ICTIS);2023-08-04

2. Multiagent Reinforcement Learning-Based Signal Planning for Resisting Congestion Attack in Green Transportation;IEEE Transactions on Green Communications and Networking;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3