An Unsupervised Intelligent Fault Diagnosis System Based on Feature Transfer

Author:

Lu Nannan1ORCID,Wang Songcheng1ORCID,Xiao Hanhan1ORCID

Affiliation:

1. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China

Abstract

With the booming development of intelligent manufacturing in modern industry, intelligent fault diagnosis systems have become a necessity to equipment and machine, which have attracted many researchers’ attention. However, due to the requirements of enough labeled data for most of the current approaches, it is difficult to implement them in real industrial scenarios. In this paper, an unsupervised intelligent fault diagnosis system based on feature transfer is constructed to extract the historical labeled data of the source domain, using feature transfer to facilitate the fault diagnosis of the target domain. The original feature set is acquired by EEMD time-frequency analysis. Then, the transfer component analysis algorithm is adopted to minimize the distance between the marginal distributions of the source and target domains which reduces the discrepancy of features between the different domains. Finally, SVM is used in multiclassification to identify different categories of faults. The performance of the fault diagnosis system under different loads is tested on the CWRU bearing data set, and the experiments show that the proposed system could effectively improve the recognition ability of unsupervised fault diagnosis.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3