Reduced Graphene Oxide/Gold Nanoparticles Modified Screen-Printed Electrode for the Determination of Palmitic Acid

Author:

Ching Chin Boon1,Abdullah Jaafar12ORCID,Yusof Nor Azah12

Affiliation:

1. Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

2. Institute of Advanced Technology, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Abstract

Palm oil is one of the major oils and fats produced in the world today. The quality of palm oil is crucial to be investigated, and one of the quality indices is free fatty acid (FFA) content. Therefore, in this study, an electrochemical approach for the determination of FFA has been explored as an alternative to replace the conventional method (titration method). The electrochemical method was developed based on electrochemically reduced graphene oxide (rGO) coupled with gold nanoparticles (AuNPs) deposited onto a screen-printed carbon electrode (SPCE) via drop-casting technique. The voltammetric behaviour of 2-methyl-1,4-naphthoquinone (VK3) in the presence of palmitic acid at the modified electrode was investigated in an acetonitrile/water mixture containing lithium perchlorate (LiClO4). The electrochemical detection of palmitic acid was based on the voltammetric reduction of VK3 to form the corresponding hydroquinone which is proportional to the concentration of palmitic acid. Under optimum conditions, the developed method showed a good linear relationship towards palmitic acid in the concentration ranging from 0.192 mM to 0.833 mM with the detection limit of 0.015 mM. The exploration of the developed system is expected to achieve high sensitivity and excellent selectivity towards the determination of FFA content in palm oil.

Funder

Universiti Putra Malaysia

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3