Luminescence of Femtosecond Laser-Processed ZnSe Crystal

Author:

Dmitruk Igor12ORCID,Berezovska Nataliya1ORCID,Degoda Volodymyr1ORCID,Hrabovskyi Yevhen1ORCID,Kolodka Roman1ORCID,Podust Galyna1ORCID,Stanovyi Oleksandr1ORCID,Blonskyi Ivan2ORCID

Affiliation:

1. Faculty of Physics, Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine

2. Department of Photon Processes, Institute of Physics, NAS of Ukraine, Kyiv 03028, Ukraine

Abstract

The ZnSe single crystal treatment in air environment with linearly polarized Ti/sapphire femtosecond (fs)laser pulses of the energy density of around 0.04-0.05 J/cm2 with central wavelength of 800 nm and the pulse duration of 140 fs at a repetition rate of 1 kHz generates the laser-induced periodic surface structures (LIPSSs). The setup with a cylindrical quartz lens at normal incidence allowed processing a relatively large area of the ZnSe sample in one pass of the laser beam. Morphology analysis of LIPSS by scanning electron microscopy (SEM) and image processing reveals the existence of two periods of around 200.0 nm and 630.0 nm simultaneously. All LIPSSs demonstrate the orientation perpendicular to the laser beam polarization. The possible nature of LIPSS formation on ZnSe single crystal is caused by the synergetic influence of the interference mechanism involving surface plasmon polaritons and hydrodynamic effects of surface morphology modification. The fs-laser-induced changes of carrier concentrations in ZnSe specify obtained periods of high spatial frequency LIPSS. The influence of femtosecond laser processing on luminescent properties of ZnSe single crystal has been studied by an analysis of the photoluminescence (PL) and X-ray luminescence (XRL) spectra of laser-treated and untreated areas in the visible region of spectrum at room and low temperatures. The PL spectra and XRL spectra, as well as temperature dependencies of XRL spectra or thermally stimulated luminescence curves, demonstrate a good correlation for untreated and fs-laser-treated ZnSe surfaces. Specific PL bands related to the extended structural defects do not appear for LIPSS at the ZnSe sample under an excitation of 337 nm (3.68 eV). The Relative intensities and position of separate components of observed luminescence bands after ultrashort laser treatment do not change significantly. Thus, the structural perfection of the ZnSe single crystal surface is preserved.

Funder

Ministry of Education and Science of Ukraine

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3