Impact-Induced Liquefaction Mechanism of Sandy Silt at Different Saturations

Author:

Li Heng1,Duan Zhao2ORCID,Dong Chenxi2,Zhao Fasuo1,Wang Qiyao3

Affiliation:

1. College of Geological Engineering and Surveying, Chang’an University, Xi’an 710054, China

2. College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China

3. College of Civil Engineering, Chang’an University, Xi’an 710054, China

Abstract

Landslide-induced liquefaction has received extensive attention from scholars in recent years. In the study of loess landslides in the southern Loess Plateau of Jingyang, some scholars have noted the liquefaction of the near-saturated sandy silt layer that is caused by the impact of loess landslides on the erodible terrace. The impact-induced liquefaction triggered by landslides is probably the reason for the long-runout landslides on the near-horizontal terrace. In order to reveal the mechanism of impact-induced liquefaction, this paper investigates the development of pore pressure and the impact-induced liquefaction of sandy silt under the influence of saturation through laboratory experiments, moisture content tests, and vane shear tests. It has been found that both the total pressure and pore water pressure undergo a transient increase and decrease at the moment of impact on the soil, which takes 40–60 ms to complete and only about 20 ms to arrive at the peak. Moreover, silty sand with a saturation of more than 80° was liquefied under the impact, and the liquefaction occurred in the shallow layer of the soil body. The shear strength of the liquefied part of the soil is reduced to 1.7∼2.8 kPa. Soils with lower saturation did not liquefy. The mechanism of the impact-induced liquefaction can be described as follows: under impact, the water in the soil gradually fills the pores of the soil body as the pore size decreases, and when the contact between the soil particles is completely replaced by pore water, the soil body loses its shear strength and reaches a liquefied state. Soils in the liquefied state have a very high permeability coefficient, and the water inside the soil body migrates upward as the particles settle, resulting in high-moisture content in the upper soil.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3