Integrated Optimization of Pipe Routing and Clamp Layout for Aeroengine Using Improved MOALO

Author:

Liu Qiang1,Tang Zhi1ORCID,Liu Huijuan1,Yu Jiapeng2,Ma Hui2,Yang Yonghua3

Affiliation:

1. School of Information and Control Engineering, Liaoning Petrochemical University, Fushun 113001, China

2. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China

3. AECC Shenyang Engine Design Institute, Shenyang 110000, China

Abstract

Pipe routing and clamp layout for aeroengine are NP-hard computational problems and complex engineering design processes. Besides space constraints and engineering rules, there are assembly constraints between pipes and clamps, which usually lead to repeatedly modifications between pipe routing and clamp layout designs. In order to solve the problems of assembly constraints and design coupling between them, an integrated optimization method for pipe routing and clamp layout is proposed. To this end, the MOALO (multiobjective ant lion optimizer) algorithm is modified by introducing the levy flight strategy to improve the global search performance and convergence speed, and it is further used as a basic computation tool. The integrated optimization method takes pipe and clamp as a whole system and then solves the Pareto solution set of pipe-clamp layouts by using improved MOALO, where the pipe path, clamp position, and rotation angle are selected as decision variables and are further optimized. Inspired by engineering experience, a clamp-based pipe path mechanism considering regular nodes is established to deal with assembly constraint problem. The proposed method comprehensively considers engineering rules of pipe routing and clamp layout and realizes the overall layout optimization of pipe-clamp system while guaranteeing the assembly constraints between pipes and clamps. Finally, some numerical computations and routing examples are conducted to demonstrate the feasibility and effectiveness of the proposed method.

Funder

Natural Science Foundation of Liaoning Province

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3