MIE-NSCT: Adaptive MRI Enhancement Based on Nonsubsampled Contourlet Transform

Author:

Liu Caiwei1ORCID,Zhao Guohua12ORCID,Dong Jiale12ORCID,Lin Yusong234ORCID,Wang Meiyun5ORCID

Affiliation:

1. School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China

2. Collaborative Innovation Center for Internet Healthcare, Zhengzhou University, Zhengzhou 450052, China

3. School of Software, Zhengzhou University, Zhengzhou 450002, China

4. Hanwei IoT Institute, Zhengzhou University, Zhengzhou 450002, China

5. Department of Radiology, People’s Hospital of Zhengzhou University, Zhengzhou 450003, China

Abstract

Image enhancement technology is often used to improve the quality of medical images and helps doctors or expert systems identify and diagnose diseases. This paper aimed at the characteristics of magnetic resonance imaging (MRI) with complex and difficult-to-enhance details and to propose a nonsubsampled contourlet transform- (NSCT-) based enhancement algorithm called MIE-NSCT. NSCT was used for MRI sub-band decomposition. For high-pass sub-bands, four fuzzy rules were proposed to enhance multiscale and multidirectional edge contour details from adjacent eight directions, whilst for low-pass sub-bands, a new adaptive histogram enhancement algorithm was proposed. The problem of noise amplification and loss of details during the enhancement process was solved. The algorithm was verified on the public dataset BraTS2017 and compared with other advanced methods. Experimental results showed that MIE-NSCT had obvious advantages in improving the quality of medical images, and high-quality medical images showed enhanced performance in grading tumour. MIE-NSCT is suitable for integration into an interactive expert system to provide support for the visualization of disease diagnosis.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3