A Comprehensive Evaluation of miR-144-3p Expression and Its Targets in Laryngeal Squamous Cell Carcinoma

Author:

Mo Bin-Yu1ORCID,Pang Jin-Shu2ORCID,Dai Wen-Bin3ORCID,Su Ya-si3ORCID,Jiang Wei4ORCID,Huang Su-Ning2ORCID

Affiliation:

1. Department of Otolaryngology, Liuzhou People’s Hospital of Guangxi, No. 8 Wenchang Rd., Liuzhou, Guangxi Zhuang Autonomous Region, 545006, China

2. Department of Radiotherapy, Guangxi Medical University Cancer Hospital, No. 71 Hedi Rd., Nanning, Guangxi Zhuang Autonomous Region, 530021, China

3. Department of Pathology, Liuzhou People’s Hospital of Guangxi, No. 8 Wenchang Rd., Liuzhou, Guangxi Zhuang Autonomous Region, 545006, China

4. Department of Educational Administration, Guangxi Medical University Cancer Hospital, No. 71 Hedi Rd., Nanning, Guangxi Zhuang Autonomous Region, 530021, China

Abstract

Laryngeal squamous cell carcinoma (LSCC) is an aggressive type of head and neck squamous cell carcinoma (HNSCC) with a relatively high rate of morbidity and mortality. An altered miR-144-3p level in LSCC with a small number of patients has been previously reported. However, the clinical implication of miR-144-3p and its involved mechanism underlying this disease is not clearly elucidated. In this work, we aimed to confirm the expression of miR-144-3p with larger samples and also to identify target genes for the investigation of the underlying mechanism of miR-144-3p in LSCC. The levels of miR-144-3p were downregulated in 155 samples of LSCC tissues as compared to 26 non-LSCC samples (SMD: -0.78; 95% confidence interval (CI): -1.23, -0.32). The AUC of 0.90 in the summarized ROC curve also indicated a potential ability to differentiate LSCC from non-LSCC tissues, with a sensitivity of 0.78 and a specificity of 0.88. With respect to the molecular mechanism, we predicted the potential targets from online-based prediction, peer-reviewed publications, and RNA-seq and microarray data. In particular, the genes influenced by transfection with miR-144-3p in the LSCC FaDu cell line were collected from the microarray GSE56243. Lastly, 12 novel targets for miR-144-3p in LSCC were obtained by different algorithms. In conclusion, our study confirmed the loss or downregulation of miR-144-3p in LSCC, which might contribute to the LSCC tumorigenesis and progression via regulation of the 12 novel targets, such as IL24, ITGA6, and CEP55. In the future, further investigations are required to validate the present results.

Funder

Promoting Project of Basic Capacity for Young and Middle-Aged University Teachers in Guangxi

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3