Poly(ε-caprolactone)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Blend from Fused Deposition Modeling as Potential Cartilage Scaffolds

Author:

Kosorn Wasana1,Wutticharoenmongkol Patcharaporn1ORCID

Affiliation:

1. Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Pathum Thani, 12120, Thailand

Abstract

The scaffolds of poly(ε-caprolactone)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PCL/PHBV) blends were fabricated from fused deposition modeling. From indirect cytotoxicity testing based on mouse fibroblasts, all scaffolds with various blend ratios were nontoxic to cells. The surface-treated scaffold with a blend ratio of 25/75 PCL/PHBV exhibited the highest proliferation of porcine chondrocytes and total glycosaminoglycans (GAGs) after 21 days of culture. The scaffolds with a blend ratio of 25/75 with local pores (LP) were prepared from FDM along with a salt leaching technique using NaCl as porogens. The effect of NaOH in surface treatment on the biological property of scaffolds was investigated. The scaffolds with LP and with 1 M NaOH surface treatment exhibited the highest proliferation of cells and total GAGs after 28 days of culture. The degradation behaviors of the scaffolds were studied. The nonsurface treated, surface treated without LP, and surface treated with LP scaffolds were degraded in phosphate buffer (pH 7.4) for 30 days at 37°C and 50°C for nonenzymatic condition and at 37°C for enzymatic condition. The surface treated with LP scaffold showed the highest amount of weight loss, followed by the surface treated without LP, and the nonsurface-treated scaffolds without LP, respectively. The results from Fourier-transform infrared spectroscopy indicated degradation of PCL and PHBV through hydrolysis of the ester functional group. The compressive strengths of all scaffolds were sufficiently high. The results suggested that the scaffolds with the existence of LP and with surface treatment showed the highest potential for use as cartilage scaffolds.

Funder

Thammasat University

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3