Intelligent Extremum Surrogate Modeling Framework for Dynamic Probabilistic Analysis of Complex Mechanism

Author:

Liu Jia-Qi1ORCID,Feng Yun-Wen1ORCID,Xue Xiao-Feng1,Lu Cheng1ORCID

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

The reliability analysis of complex mechanisms involves time-varying, high-nonlinearity, and multiparameters. The traditional way is to employ Monte Carlo (MC) simulation to achieve the reliability level, but this method consumes too much computing resources and is even computationally intractable. To improve the efficiency and accuracy of dynamic probabilistic analysis of complex mechanisms, an intelligent extremum surrogate modeling framework (IESMF, short for) is proposed based on extremum response surface method (ERSM), combined with artificial neural network (ANN) method and an improved optimize particle swarm optimization (PSO) method. Hereinto, the ERSM is used to simplify the dynamic process of output response to the extremum value of transient analysis; ANN is applied to establish a mathematical model between input variables and response, and the improved PSO method is utilized in search of initial weights and thresholds of the model. The effectiveness of the IESMF is demonstrated to perform the Rack-and-pinion steering mechanism (RPSM) reliability analysis. The results show that when the allowable value of gear root stress is equal to 850 MPa, the RPSM has a reliability degree of 0.9971. Through the validation process, it is illustrated that IESMF is accurate and efficient in dynamic probabilistic analysis of complex mechanisms, and its comprehensive performance is better than the MC method and ERSM. The research effort offers new ideas for the reliability estimation of a complex mechanism, thus enriching the method and theory of mechanical reliability design.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3