Response of Soybean (Glycine max L. (Merrill)) to Bradyrhizobium Inoculation, Lime, and Phosphorus Applications at Bako, Western Ethiopia

Author:

Dabesa Alemayehu1ORCID,Tana Tamado2

Affiliation:

1. Oromia Agricultural Research Institute, Bako Agricultural Research Center, Bako, Ethiopia

2. Haramaya University, Dire Dawa, Ethiopia

Abstract

Soil acidity and poor soil fertility are the major soil chemical constraints which limit crop productivity in western Ethiopia. In leguminous crops, low productivity is not only a result of declining soil fertility but also reduced N2 fixation due to biological and environmental factors. Thus, this study was carried out to determine the influence of lime, Bradyrhizobium inoculation, and phosphorus fertilizer on soybean yield components and yields and to identify economically feasible treatments that can maximize the productivity of soybean. Factorial combinations of three Bradyrhizobium strains (uninoculated, TAL379, and Legumefix), two lime levels (0 and 3.12 t ha−1), and four P levels (0, 23, 46, and 69 kg P2O5 ha−1) were laid out in RCBD with three replications. The results showed that the application of lime (3.12 t ha−1) significantly increased soil pH (5.6), plant height (77.2 cm), number of primary branches per plant (6.6), 100-seed weight (17.5 g), grain yield (3431 kg ha−1), and harvest index (41%). Similarly, significantly higher grain yield (3228 kg ha−1) and harvest index (41%) were obtained with inoculation of TAL379 whereas Legumefix inoculation recorded the highest number of primary branches (6.7). The effect of P at 69 kg P2O5 ha−1also gave significantly higher plant height (75.5 cm), number of primary branches (6.6), grain yield (3277 kg ha−1), and harvest index (43%). The interaction of P and Bradyrhizobium inoculation significantly influenced days to physiological maturity and number of pods per plant. Similarly, the interaction of phosphorus and lime significantly influenced days to 50% flowering. Likewise, the combination of lime (3.12 t ha−1) with TAL379 inoculation gave the highest aboveground biomass. On the other hand, the interaction of Bradyrhizobium × lime × phosphorus revealed that application of 69 kg P2O5 ha−1 without TAL379 inoculation under limed condition significantly resulted in the highest number of nodules per plant (79.4) and number of effective nodules (67.9). Thus, it can be concluded that, particularly in the western part of Ethiopia where soil acidity is a major problem, application of phosphorus with Bradyrhizobium and lime is an alternative option to enhance biological nitrogen fixation and grain yield of soybean in smallholder farming system.

Funder

Federal Ministry of Economic Cooperation and Development

Publisher

Hindawi Limited

Subject

Agronomy and Crop Science

Reference48 articles.

1. Use of soybeans in food formulation in Tanzania;H. S. Laswai

2. Comparative growth and grain yield responses of soybean genotypes to phosphorous fertilizer application;J. Mahamood;African Journal of Biotechnology,2009

3. Genetic variation of world soybean maturity date and geographic distribution of maturity groups

4. Trends in soy bean trade in Ethiopia;H. Mekonnen;Research Journal of Agriculture and Environmental Management,2014

5. Agricultural sample survey report on area and production of major crops;CSA (Central Statistical Agency);Central Statistical Authority,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3