Affiliation:
1. School of Aircraft Engineering, Xi’an Aeronautical University, Xi’an 710077, China
2. Department of Engineering Mechanics, Northwestern Polytechnical University, Xi’an 710129, China
Abstract
High aspect ratio wing (HARW) structures will deform greatly under aerodynamic loads, and changes in the stiffness will have a great impact on the flutter characteristics of such wings. Based on this, this paper presents an effective method to determine the effect of the stiffness on the flutter characteristics of HARWs. Based on the calculation theory of the mechanical profile of thin-walled structures, the torsional stiffness and bending stiffness of the wing are obtained through calculation. We use the fluid-structure coupling method to analyze the flutter characteristics of the wing, and we use our research results based on the corotational (CR) method to perform structural calculations. The load is calculated using a computational fluid dynamics (CFD) solver. The results show that, compared with the original wing, when the bending stiffness and torsional stiffness of the wing along the spanwise direction increase by 8.28% and 5.22%, respectively, the amplitude of the flutter decreases by approximately 30%. Increasing the stiffness in the range of 0.4 to 0.6 Mach has a greater impact on the flutter critical velocity, which increases by 12.03%. The greater the aircraft’s flight speed is, the more severe the stiffness affects the wing limit cycle oscillation (LCO) amplitude.
Funder
Natural Science Basic Research Plan in Shaanxi Province of China
Subject
General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献