Driving Style Recognition under Connected Circumstance Using a Supervised Hierarchical Bayesian Model

Author:

Chen Depeng1ORCID,Chen Zhijun1ORCID,Zhang Yishi2ORCID,Qu Xu3ORCID,Zhang Mingyang4ORCID,Wu Chaozhong1ORCID

Affiliation:

1. Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan, China

2. School of Management, Wuhan University of Technology, Wuhan, China

3. School of Transportation, Southeast University, Nanjing, China

4. School of Engineering, Aalto University, Espoo, Finland

Abstract

In recent years, the automated driving system has been known to be one of the most popular research topics of artificial intelligence (AI) and intelligent transportation system (ITS). The journey experience on automated vehicles and the intelligent automated driving system could be improved by individualization driving understanding. Although previous studies have proposed methods for driving styles understanding, the individualization driving classification has not been addressed thoroughly. Therefore, in this study, a supervised method is proposed to understand driving behavioral structure and the latent driving styles by incorporating the prior knowledge. Firstly, a novel method is established for driving behavioral encoding and raw driving data mining. Then, the Labeled Latent Dirichlet Allocation (LLDA) is proposed to understand the latent driving styles from individual driving with driving behaviors. Finally, the Safety Pilot Model Deployment (SPMD) data are used to validate the performance of the proposed model. Experimental results show that the proposed model uncovers latent driving styles effectively and shows good agreement to real situations, which provides theoretical guidance on driving behavior recognition for better individual experience on automated driving vehicles.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3