Affiliation:
1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
2. Key Laboratory of Fluid Power and Intelligent Electro-Hydraulic Control (Fuzhou University), Fujian Province University, Fuzhou 350116, China
Abstract
Wind disturbance could render thrust and power variation or even causing roll which is difficult to maintain a steady flight in gust especially when the horizontal or vertical wind is involved. In this paper, the horizontal wind and vertical wind are presented to study the influence of wind disturbance on aerodynamic characteristics of the quadrotor aircraft in hovering by experiments and numerical simulations. First, the simplified aerodynamic model with the wind disturbance was analyzed in detail. Also, the low-speed wind tunnel tests were performed to obtain the thrust and power variation of the quadrotor aircraft with rotor spacing ratio
-1.8 in both horizontal and vertical winds of 0-5 m/s with the rotational speed ranging from 1500 to 2300 rpm. Finally, the simulations are performed by utilizing the Computational Fluid Dynamics (CFD) software ANSYS to study the flow field distribution of quadrotor with the influence of the wind disturbance. The comparison between experimental results and simulation results shows that the quadrotor achieves better aerodynamic performance with larger thrust and smaller power consumption at rotor spacing ratio
. Additionally, the quadrotor can effectively resist the horizontal wind disturbance, which will bring larger power loading for the quadrotor, especially at 2.5 m/s. However, the vortices near blade-tip move upwards and deform with the influence of vertical wind, resulting in the reduction of thrust and aerodynamic performance of the quadrotor.
Funder
Fujian Provincial Industrial Robot Basic Components Technology Research and Development Center
Subject
Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献