Multiobjective Hydraulic Design and Performance Analysis of a Vortex Pump Based on Orthogonal Tests

Author:

Quan Hui1ORCID,Wu Yongkang1,Guo Ying1,Song Kai1,Li Yanan1

Affiliation:

1. College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

We design optimization on the overall blade structure of a vortex pump conducted by using the orthogonal test method to clarify the matching relationship of impeller and casing structures and then improve the hydraulic performance of the vortex pump. Based on two different impeller structures of forward-deflecting (denoted as R1 − F2) and backward-deflecting (denoted as F1 − R2), key parameters describing the impeller structure are calculated through optimization for the objective function of hydraulic efficiency by means of orthogonal tests and computational fluid dynamic simulations. Optimization computations show that the forward-deflecting blade impeller is superior to the backward-deflecting one. Model test of the optimized vortex pump is carried out calculating the error from the comparison of pump efficiencies calculated by model test and numerical simulation is calculated to be less than 6%. The experimental verification shows that the flow simulation has some errors. The weight of structure parameters such as the blade installation angle (α), the blade deflecting angle (β), the position of blade deflecting point (L), the radius (r) of smoothing arc at the deflecting point, the wedge type (W) of blade, to the lift head, the flow rate, and the efficiency of the pump is investigated, through multiparameter optimizations. Visualization observation of flows in the model pump consisted of a back-placed impeller and a front vaneless chamber is further performed. The characteristic of vortex formation predicted by flow simulation agrees with the result of visualization observation. The above results demonstrate that the optimum impeller type of vortex pump is forward-deflecting blade impeller. The optimum combination of the key structure parameters is that the deflection angle of the blade inlet (α) equals 30°, the position of blade deflecting point lM = 2/3 L, the chamfering radius (r) at the deflecting point r = 3 mm, and the best wedge type is axial deflecting blade.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference35 articles.

1. Research stage and development tendency of vortex pump;H. Quan;Fluid Machinery,2016

2. Present status and development prospect of vortex pump;Y. Wang;Drainage and Irrigation Machinery,2004

3. Die arbeitsweise von freistrompumpen;K. Rutschi;Schweizerishe Bauzeitung,1968

4. An analytical and experimental study of a vortex pump;G. P. Schivley;Transactions of the ASME,1970

5. The reasearch internal flow of and performance of a vortex pump (The front page);O. Hideki

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3