Feature Selection of the Rich Model Based on the Correlation of Feature Components

Author:

Jin Shunhao12,Liu Fenlin12,Yang Chunfang12ORCID,Ma Yuanyuan3,Liu Yuan4

Affiliation:

1. Zhengzhou Science and Technology Institute, Zhengzhou 450001, China

2. Henan Key Laboratory of Cyberspace Situation Awareness, Zhengzhou 450001, China

3. College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China

4. Huanghe Science and Technology University, Zhengzhou 450000, China

Abstract

Currently, the popular Rich Model steganalysis features usually contain a large number of redundant feature components which may bring “curse of dimensionality” and large computation cost, but the existing feature selection methods are difficult to effectively reduce the dimensionality when there are many strongly correlated effective feature components. This paper proposes a novel selection method for Rich Model steganalysis features. First, the separability of each feature component in the submodels of Rich Model is measured based on the Fisher criterion, and the feature components are sorted in the descending order based on the separability. Second, the correlation coefficient between any two feature components in each submodel is calculated, and feature selection is performed according to the Fisher value of each component and the correlation coefficients. Finally, the selected submodels are combined as the final steganalysis feature. The results show that the proposed feature selection method can effectively reduce the dimensionalities of JPEG domain and spatial domain Rich Model steganalysis features without affecting the detection accuracies.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3