Affiliation:
1. School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042, China
Abstract
It is important to improve the dynamic performance and the low-voltage ride-through (LVRT) capability of a grid-connected photovoltaic (PV) system. This paper presents synergetic control for the control of a grid-connected PV system. Modeling of a grid-connected PV system is described, and differential-algebra equations are obtained. Two control strategies are used in normal operation and during LVRT of a PV system. Practical synergetic controllers with two control strategies are synthesized. The mathematical expressions are derived for computing control variables. The design of the synergetic controllers does not require the linearization of the grid-connected PV system. A grid-connected PV system with synergetic controllers is simulated in Simulink surroundings. The control performance is studied in normal operation and during LVRT. Simulation results show that the synergetic controllers are robust and have good dynamic characteristics under different operation states.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献