Hypoxia-Induced miR-210 Promotes Endothelial Cell Permeability and Angiogenesis via Exosomes in Pancreatic Ductal Adenocarcinoma

Author:

Wu Guo1ORCID,Ding Xiaojie2ORCID,Quan Gang1ORCID,Xiong Jianwei1ORCID,Li Qiang1ORCID,Li Zhonghu3ORCID,Wang Yaqin4ORCID

Affiliation:

1. Department of Hepatobiliary Surgery, The Affiliated Hospital of North Sichuan Medical College, Institute of Hepatobiliary-Pancreatic-Intestinal of North Sichuan Medical College, Nanchong, China

2. Department of Dermatology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China

3. Department General Surgery, Central Theater Command General Hospital of PLA, Wuhan, China

4. Department of Pathology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China

Abstract

Background. Exosomes have been proven to play important diagnostic, regulatory, or communication roles in tumorigenesis, tumor progression, or metastasis; in recent studies, lots of molecules, including miRNAs, were found to be aberrantly expressed in tumor exosomes and were correlated with tumor development. However, studies about the expression, relationship, or control mechanisms of miRNAs in exosomes in pancreatic ductal adenocarcinoma (PDAC) are scarce and urgently needed. The aim of this article was to identify and investigate abnormally expressed miRNAs in PDAC exosomes in vivo and in vitro. Methods. Microarray studies were used to detect aberrantly expressed miRNAs in PDAC exosomes, and miR-210 expression in cells or exosomes was further analyzed by qRT-PCR. Bioinformatics analyses, dual-luciferase assays, WB, and other assays were utilized to explore the miRNA molecular mechanisms. The living cell coculture model and immunofluorescence analysis were employed to image the communication between PDAC cells and endothelial cells. Other biological experiments in the study include a real-time intravital imaging system, EdU, transwell, xenograft models, and so on. Results. miR-210 is significantly expressed in PDAC exosomes and malignant cells. High miR-210 significantly facilitated tumor angiogenesis, cell invasion, and proliferation in PDAC cells. Further mechanistic detection revealed that miR-210 negatively regulated EFNA3 expression and participated in the PI3K/AKT/VEGFA or Wnt/Β-catenin/RHOA pathways, thus promoting tumor angiogenesis and cellular permeability. PDAC cells promote endothelial angiogenesis or permeability via miR-210 transmission by tumor exosomes. Exosomal miR-210 promotes PDAC progression in vivo. Further detection of PDAC plasma exosomal miR-210 suggests that exosomal miR-210 expression was high and significantly associated with vascular invasion and TNM stage and was an independent risk factor for PDAC overall survival. Conclusions. PDAC cell-secreted exosomes could promote angiogenesis and cellular permeability of neighboring endothelial angiogenesis or permeability via miR-210 transmission. Exosomal miR-210 may play important roles in tumor biology and may be a useful prognostic marker in PDAC.

Funder

Bureau of Science and Technology Nanchong City

Publisher

Hindawi Limited

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3