A Review of Membrane Computing Models for Complex Ecosystems and a Case Study on a Complex Giant Panda System

Author:

Duan Yingying1,Rong Haina1ORCID,Qi Dunwu2,Valencia-Cabrera Luis3ORCID,Zhang Gexiang14ORCID,Pérez-Jiménez Mario J.3

Affiliation:

1. School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, Sichuan, China

2. Chengdu Research Base of Giant Panda Breeding, Chengdu 6110081, Sichuan, China

3. Research Group on Natural Computing, Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

4. Research Center for Artificial Intelligence, Chengdu University of Technology, Chengdu 610059, Sichuan, China

Abstract

Ecosystem modelling based on membrane computing is emerging as a powerful way to study the dynamics of (real) ecological populations. These models, providing distributed parallel devices, have shown a great potential to imitate the rich features observed in the behaviour of species and their interactions and key elements to understand and model ecosystems. Compared with differential equations, membrane computing models, also known as P systems, can model more complex biological phenomena due to their modularity and their ability to enclose the evolution of different environments and simulate, in parallel, different interrelated processes. In this paper, a comprehensive survey of membrane computing models for ecosystems is given, taking a giant panda ecosystem as an example to assess the model performance. This work aims at modelling a number of species using P systems with different membrane structure types to predict the number of individuals depending on parameters such as reproductive rate, mortality rate, and involving processes as rescue or release. Firstly, the computing models are introduced conceptually, describing the main elements constituting the syntax of these systems and explaining the semantics of the rules involved. Next, various modelled species (including endangered animals, plants, and bacteria) are summarized, and some computer tools are presented. Then, a discussion follows on the use of P systems for ecosystem modelling. Finally, a case study on giant pandas in Chengdu Base is analysed, concluding that the study in this field by using PDP systems can provide a valuable tool to deepen into the knowledge about the evolution of the population. This could ultimately help in the decision-making processes of the managers of the ecosystem to increase the species diversity and modify the adaptability. Besides, the impacts of natural disasters on the population dynamics of the species should also be considered. The analysis performed throughout the paper has taken into consideration this fact in order to increase the reliability of the prospects making use of the models designed.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3