Pump Selection and Performance Prediction for the Technical Innovation of an Axial-Flow Pump Station

Author:

Zhu Honggeng1ORCID,Bo Ge2,Zhou Yuanbing3,Zhang Rentian2ORCID,Cheng Jilin1

Affiliation:

1. School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China

2. Jiangsu Surveying and Design Institution of Water Resources Co. Ltd., Yangzhou 225127, China

3. Luoyun Water Conservancy Project Management Office of Jiangsu Province, Shuqian 223800, China

Abstract

Axial-flow pumps are widely used in every sector of China. After many years of operation, the aging of mechanical and electrical facilities poses threats to their steady and safe operation. Taking the technical innovation of an axial-flow pump station as an example, the study is focused on the pump selection and performance prediction. The pump similarity law and specific speed were applied to guide the pump selection based on the designed head and discharge. The performances of pump models were compared and it is suggested for the technical innovation that when the selected model pump is adopted, the impeller diameter is kept at 3100 mm and the rotational speed is reduced from 150r/min to 136.4r/min to improve its cavitation performance. A three-dimensional pumping system model was established by using software Pro/E and CFD analyses were conducted to predict the hydraulic performance of the pumping system for the evaluation of technical innovation. It is shown through the comparison of computed results with model test results that the designed flow rate corresponding to the designed head can be fully satisfied with the selected pump and stronger pumping capacity can be prospected at the designed and mean lifting head. The pumping system model tests, in comparison between the original and the selected model pump, indicate that when the innovated pump station operates under characteristic heads, the pumping system efficiency can be raised by more than 3 percentages, and the cavitation allowance can be decreased by 0.90m; thus, better engineering and economic benefits can be prospected through the technical innovation.

Funder

China National Science and Technology Supporting Program

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3