Affiliation:
1. Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, USA
Abstract
Three-dimensional (3D) microwave and millimeter wave imaging techniques based on the holographic principles have been successfully employed in several applications such as security screening, body shape measurement for the apparel industry, underground imaging, and wall imaging. The previously proposed 3D holographic imaging techniques require the acquisition of wideband data over rectangular or cylindrical apertures. Requirement for wideband data imposes limitations on the hardware (in particular at very high or very low frequencies). It may also lead to errors in the produced images if the media is dispersive (e.g., in biomedical imaging) and not modeled properly in the image reconstruction process. To address these limitations, here, we propose a technique to perform 3D imaging with single frequency data. Instead of collecting data at multiple frequencies, we acquire the backscattered fields with an array of resonant antennas. We demonstrate the possibility of 3D imaging with the proposed setup and perform a comprehensive study of the capabilities and limitations of the technique via simulations. To perform a realistic study, the simulation data is contaminated by noise.
Subject
Electrical and Electronic Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献