High Throughput Screening of Additives Using Factorial Design to Promote Survival of Stored Cultured Epithelial Sheets

Author:

Reppe Sjur123ORCID,Jackson Catherine Joan134,Ringstad Håkon1,Tønseth Kim Alexander356,Bakke Hege1,Eidet Jon Roger7ORCID,Utheim Tor Paaske13678ORCID

Affiliation:

1. Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway

2. Unger-Vetlesen Institute, Lovisenberg Diakonale Hospital, Oslo, Norway

3. Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Norway

4. Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway

5. Institute for Surgical Research, Oslo University Hospital, Oslo, Norway

6. Faculty of Medicine, University of Oslo, Oslo, Norway

7. Department of Ophthalmology, Oslo University Hospital, Oslo, Norway

8. Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway

Abstract

There is a need to optimize storage conditions to preserve cell characteristics during transport of cultured cell sheets from specialized culture units to distant hospitals. In this study, we aimed to explore a method to identify additives that diminish the decrease in the viability of stored undifferentiated epidermal cells using multifactorial design and an automated screening procedure. The cultured cells were stored for 7–11 days at 12°C in media supplemented with various additives. Effects were evaluated by calcein staining of live cells as well as morphology. Twenty-six additives were tested using (1) a two-level factorial design in which 10 additives were added or omitted in 64 different combinations and (2) a mixture design with 5 additives at 5 different concentrations in a total of 64 different mixtures. Automated microscopy and cell counting with Fiji enabled efficient processing of data. Significant regression models were identified by Design-Expert software. A calculated maximum increase of live cells to 37 ± 6% was achieved upon storage of cell sheets for 11 days in the presence of 6% glycerol. The beneficial effect of glycerol was shown for epidermal cell sheets from three different donors in two different storage media and with two different factorial designs. We have thus developed a high throughput screening system enabling robust assessment of live cells and identified glycerol as a beneficial additive that has a positive effect on epidermal cell sheet upon storage at 12°C. We believe this method could be of use in other cell culture optimization strategies where a large number of conditions are compared for their effect on cell viability or other quantifiable dependent variables.

Funder

South East Norway Regional Health Authority

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3