An Approach for Resilient-Green Supplier Selection Based on WASPAS, BWM, and TOPSIS under Intuitionistic Fuzzy Sets

Author:

Xiong Lei1,Zhong Shuqi2,Liu Sen3ORCID,Zhang Xiao4,Li Yanfeng5ORCID

Affiliation:

1. School of Economics and Management, Yunnan Normal University, Kunming 650500, Yunnan, China

2. International Business School, Yunnan University of Finance and Economics, Kunming 650221, China

3. School of Logistics, Yunnan University of Finance and Economics, Kunming 650221, China

4. School of International Trade and Economics, University of International Business and Economic, Beijing 100029, China

5. Business School, Yunnan University of Business Management, Kunming 650106, China

Abstract

The green supply chain management (GSCM) is an enterprise’s effort to protect the environment and a key way to achieve sustainable environmental development. On the contrary, globalization brings more risks to the supply chain. Resilience has become a critical definition in supply chain management to help enterprises review the disruption and return to normal state. Therefore, choosing a resilient-green supplier to build a supply chain environment with flexibility and greenness under interruption becomes necessary for research works. However, the existing studies tended to focus on only one of the factors with resilience and greenness, and no comprehensive criteria system and performance value is expressed by a crisp number. Therefore, this paper proposes a hybrid method which integrates the Best-Worst method (BWM), Weighted Aggregated Sum-Product Assessment (WASPAS), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to solve the critical problems. Firstly, BWM is used to weigh the criteria; secondly, intuitionistic fuzzy numbers are introduced into the ranking stage. Then, the integrated WASPAS and TOPSIS are used to rank the alternatives to select the optimal resilient-green supplier. Finally, an illustrative example proves the feasibility of this method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3